通过图形反馈的在线学习问题已经在文献中进行了广泛的研究,因为它的一般性和对各种学习任务进行建模的潜力。现有作品主要研究对抗和随机反馈。如果对反馈机制的先验知识是不可用的或错误的,那么这种专门设计的算法可能会遭受巨大的损失。为了避免此问题,\ citet {ererez2021towards}尝试针对两个环境进行优化。但是,他们认为反馈图是无方向性的,每个顶点都有一个自循环,这会损害框架的通用性,并且在应用程序中可能无法满足。有了一般的反馈图,在拉动该手臂时可能无法观察到手臂,这使得探索更加昂贵,并且在两种环境中最佳性能的算法更具挑战性。在这项工作中,我们通过新的权衡机制克服了这一困难,并精心设计的探索和剥削比例。我们证明了所提出的算法同时实现$ \ mathrm {poly} \ log t $在随机设置中的遗憾,而在$ versarial设置中,$ \ tilde {o} $ \ tilde {o}的最小值遗憾t $是地平线,$ \ tilde {o} $隐藏参数独立于$ t $以及对数项。据我们所知,这是通用反馈图的第一个最佳世界结果。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
知识图(kgs)将世界知识建模为结构三元组是不可避免的。多模式知识图(MMKGS)仍然存在此类问题。因此,知识图完成(KGC)对于预测现有KG中缺失的三元组至关重要。至于现有的KGC方法,基于嵌入的方法依靠手动设计来利用多模式信息,而基于芬太尼的方法在链接预​​测中并不优于基于嵌入的方法。为了解决这些问题,我们提出了一个Visualbert增强知识图完成模型(简称VBKGC)。 VBKGC可以为实体捕获深层融合的多模式信息,并将其集成到KGC模型中。此外,我们通过设计一种称为Twins Twins负抽样的新的负抽样策略来实现KGC模型的共同设计和负抽样。双胞胎阴性采样适用于多模式场景,可以对齐实体的不同嵌入。我们进行了广泛的实验,以显示VBKGC在链接预测任务上的出色表现,并进一步探索VBKGC。
translated by 谷歌翻译
在许多图像引导的临床方法中,医学图像分割是一个基本和关键的步骤。基于深度学习的细分方法的最新成功通常取决于大量标记的数据,这特别困难且昂贵,尤其是在医学成像领域中,只有专家才能提供可靠和准确的注释。半监督学习已成为一种吸引人的策略,并广泛应用于医学图像分割任务,以训练注释有限的深层模型。在本文中,我们对最近提议的半监督学习方法进行了全面综述,并总结了技术新颖性和经验结果。此外,我们分析和讨论现有方法的局限性和几个未解决的问题。我们希望这篇评论可以激发研究界探索解决这一挑战的解决方案,并进一步促进医学图像细分领域的发展。
translated by 谷歌翻译
随机奇异值分解(RSVD)是用于计算大型数据矩阵截断的SVD的一类计算算法。给定A $ n \ times n $对称矩阵$ \ mathbf {m} $,原型RSVD算法输出通过计算$ \ mathbf {m mathbf {m} $的$ k $引导singular vectors的近似m}^{g} \ mathbf {g} $;这里$ g \ geq 1 $是一个整数,$ \ mathbf {g} \ in \ mathbb {r}^{n \ times k} $是一个随机的高斯素描矩阵。在本文中,我们研究了一般的“信号加上噪声”框架下的RSVD的统计特性,即,观察到的矩阵$ \ hat {\ mathbf {m}} $被认为是某种真实但未知的加法扰动信号矩阵$ \ mathbf {m} $。我们首先得出$ \ ell_2 $(频谱规范)和$ \ ell_ {2 \ to \ infty} $(最大行行列$ \ ell_2 $ norm)$ \ hat {\ hat {\ Mathbf {M}} $和信号矩阵$ \ Mathbf {M} $的真实单数向量。这些上限取决于信噪比(SNR)和功率迭代$ g $的数量。观察到一个相变现象,其中较小的SNR需要较大的$ g $值以保证$ \ ell_2 $和$ \ ell_ {2 \ to \ fo \ infty} $ distances的收敛。我们还表明,每当噪声矩阵满足一定的痕量生长条件时,这些相变发生的$ g $的阈值都会很清晰。最后,我们得出了近似奇异向量的行波和近似矩阵的进入波动的正常近似。我们通过将RSVD的几乎最佳性能保证在应用于三个统计推断问题的情况下,即社区检测,矩阵完成和主要的组件分析,并使用缺失的数据来说明我们的理论结果。
translated by 谷歌翻译
医学图像分割是许多临床方法的基本和关键步骤。半监督学习已被广​​泛应用于医学图像分割任务,因为它减轻了收购专家审查的注释的沉重负担,并利用了更容易获得的未标记数据的优势。虽然已被证明是通过实施不同分布下的预测的不变性的一致性学习,但现有方法无法充分利用来自未标记数据的区域级形状约束和边界级距离信息。在本文中,我们提出了一种新颖的不确定性引导的相互一致学习框架,通过将任务中的一致性学习与自组合和交叉任务一致性学习从任务级正则化的最新预测集成了任务内的一致性学习,从而有效地利用了未标记的数据利用几何形状信息。该框架是由模型的估计分割不确定性指导,以便为一致性学习选择相对某些预测,以便有效地利用来自未标记数据的更可靠的信息。我们在两个公开的基准数据集中广泛地验证了我们提出的方法:左心房分割(LA)数据集和大脑肿瘤分割(BRATS)数据集。实验结果表明,我们的方法通过利用未标记的数据和优于现有的半监督分段方法来实现性能增益。
translated by 谷歌翻译
Top-1 ImageNet优化促进了可能在推理设置中不切实际的网络。二元神经网络(BNN)具有显着降低计算强度,但现有模型的质量低。为了克服这种缺陷,我们提出了PokeConv,一个二进制卷积块,这是通过添加多个剩余路径的技术提高BNN的质量,并调整激活函数。我们将其应用于Reset-50并优化Reset的初始卷积层,这很难二向化。我们命名由此产生的网络系列POKBNN。选择这些技术以产生最高1精度和网络成本的良好改进。为了使成本的联合优化以及准确性,我们定义算术计算工作(ACE),用于量化和二值化网络的硬件和能量启发成本度量。我们还确定需要优化控制二值化梯度近似的探索过的超参数。我们在高精度上建立了一种新的,强大的最先进(SOTA),以及常用的CPU64成本,ACE成本和网络大小指标。 ReactNET-ADAM是BNN中的先前SOTA,实现了7.9 ACE的70.5%的前1个精度。一小块的炭达到70.5%的前1个,成本降低超过3倍;一个较大的POKBNN以7.8 ACE获得75.6%的顶级1,在不增加成本的情况下,准确性提高超过5%以上。 JAX /亚麻和再现说明中的POKEBNN实现是开放的。
translated by 谷歌翻译
尽管在许多机器学习任务方面取得了巨大成功,但深度神经网络仍然易于对抗对抗样本。虽然基于梯度的对抗攻击方法在计算机视野领域探索,但由于文本的离散性质,直接应用于自然语言处理中,这是不切实际的。为了弥合这一差距,我们提出了一般框架,以适应现有的基于梯度的方法来制作文本对抗性样本。在该框架中,将基于梯度的连续扰动添加到嵌入层中,并在前向传播过程中被放大。然后用掩模语言模型头解码最终的扰动潜在表示以获得潜在的对抗性样本。在本文中,我们将我们的框架与\ textbf {t} Extual \ TextBF {P} ROJECTED \ TextBF {G} Radient \ TextBF {D} excent(\ TextBF {TPGD})进行ronject \ textbf {p}。我们通过在三个基准数据集上执行转移黑匣子攻击来评估我们的框架来评估我们的框架。实验结果表明,与强基线方法相比,我们的方法达到了更好的性能,并产生更精细和语法的对抗性样本。所有代码和数据都将公开。
translated by 谷歌翻译
神经网络稳健性近年来已成为机器学习中的核心主题。大多数培训算法,提高模型对抗对抗和共同腐败的鲁棒性也引入了大的计算开销,需要向前和后向往的数量和后向往的多达十倍以便收敛。为了打击这种低效率,我们提出了Bullettrain $ - $界限示例挖掘技术,以大大降低强大培训的计算成本。我们的主要观察是,只有一小部分的例子是有利于改善稳健性的有益。Bullettrain动态预测了这些重要的例子,并优化了强大的培训算法,专注于重要例子。我们将技术应用于几个现有的强大培训算法,在CiFar-10和Cifar-10-C和CiFar上的Augmix上获得了2.1美元\ Times $ 10.7 $ \ times $ Scase-Up。100-C没有任何清洁和稳健的准确性。
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译